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SYMMETRY PROPERTIES OF THE DIFFUSION TENSOR IN THE THEORY 

OF NEW PHASE FORMATION 

A. A. Druzhinin and N. N. Tunitskii* UDC 539.196.198 

The classical theory of the growth of a new phase with phase transitions of the first 
kind [1-5] is based on a consideration of the diffusion of the new phase seed in the space 
of their dimension through a potential barrier which occurs because of the competition be- 
tween the volume and surface energies. In a number of cases, it turns out to be necessary 
to characterize the seed by two or more variables rather than one. Thus, in the most popular 
problem of mixture condensation, the natural variables are the numbers of molecules of the 
mixture components in the seed, and in different problems of the theory of cavitation it is 
expedient to usa the density [6] or rate of growth [7] of the seed as variables in addition 
to the dimension, finally, the seed temperature [8] plays the part of an additional parameter 
in taking account of the incomplete thermal equilibrium between the seed and the medium. 

The evolution of a nonequillbrium distribution function f(x, t) of the seed-characteriz- 
ing parameters x = {x i} is determined by the multidimensional Fokker--Planck equation 

J i (i) 
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where @ ~ exp(--U(x)/kT) is a quasiequilibrium distribution function describing the fluctua- 
tion seed distribution, U(x) is the minimal work in forming a seed with the parameters x, T 
is the temperature, and (i) is valid if the characteristic scales x i and t are large compared 
to the jumps Axi (generally discrete) in the variables xi and with relaxation time T of the 
remaining variables of the system to the incomplete equilibrium characterized by giving x. 

In considering the problem in a stationary formulation when supersaturation is kept con- 
stant, and the growing seeds are removed, the point xc of the crossing U(x) plays a funda- 
mental part in the calculation of the growth rate and the other new phase characteristics 
(completely analogously to the maximum point U in one-dimensional theory), only values of 
Dij(x c) [6, 9] enter into the final expression (on which the composition, temperature, etc. 
of the growing seeds generally depend strongly). It can be seen that the macroscopic equa- 
tions of motion xi = xi (x) combined with (i) for an individual seed have the form as x § x c 

�9 

xi =-- DiiXj,  Xi ou (2) 

which agrees formally with the form of the kinetic equations in the neighborhood of the 
ordinary equilibrium point corresponding to the minimum U(x). It is well known that the 
principle of microscopic reversibility of the time results, in the latter case, in the On- 
sager symmetry relationships 

Do@rain) = Dj~min). (3) 

Expressions for D satisfying the relationships 

Ot~) = D~), (4) 

which are formally analogous to (3), have been obtained in a number of papers on the theory 
of mixture condensation [9, i0] and nonlsothermal condensation [8], where compliance with 
(4) is related to the Onsager principle in certain researches [8]. 

In this paper we obtain an expression for D in the problem of binary mixture condensa- 
tion) and we show that satisfying (4) is related to the model nature of the approximations 
used in [6, 9, i0, ii]. 

First of all) let us note that compliance with (4) has no relation to the principle of 
microscopic reversibility. In fact, the values of Dij(x c) plays a role only in a strongly 
nonequilibrium state with stationary seed flux when the point xc is isolated. But the 
principle of microscopic reversibility is known not to hold in this state, for the substitu- 
tion t § --t the direction of the seed flux changes. A more formal derivation can be per- 
formed. To do this) we go over to the variables y = {yi} in which 

U(x) U(x~) A, ~ I ~ 2 
kT kT ~ Yo + -~- A~y~, A~ > O, i = OA. �9 

~>o 

The equations of motion for ~he correlation functions <yi(t~)yj(ta) >, follows from (2), where 
< > is averaging with respect to the Gibbs distribution 

o <y~ (t~) y~ (t2)> = - - ~  DijAj <y~ (t 0 y~ (t~)> (5) 
Otl j 

(here Dij is the diffusion tensor in the space <yi>). 

Let us find the constraints imposed on D by the principle of microscopic reversibility. 
Proceeding analogously to the derivation of the usual Onsager relationships, we differentiate 
the reversibility condition <yi(tl)yk(ga)> = <yi(ts)yk(t:)> with respect to t~, and setting 
t, = ta we obtain DikAk<Y~> = DkiAi<Y~>. For i, k > 0 <y~> = Ai * from which the relation- 

ships (4) follow. The case i = 0 requires special investigation since <y~>= jv =-~-o0~0 ~0 
S exp ~-~-t~ Y~dY o 

diverges, where the linear approximation (5) is known to be inapplicable in the domain 
[Yol >> A~ */2 defining the integral. Therefore, within the framework of our analysis, the 
microscopic reversibility principle does not result in any constraints on the form of the 
coefficients Dok, Dko. Moreover, in going from {Yi} to another set of variables by a linear 
approximation including yo, the symmetry properties of the tensor Dik(i, k > O) generally 
vanish. 
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The symmetry relations (4) or other relations between the components of D can however 
be the result of continuing the kinetic equations (2) from the stability domain in the con- 
sideration of a specific model to which we turn. 

Let us investigate the formation of the liquid phase seed in a weakly supersaturated 
gas mixture of the two components A and B. Let us examine the problem in a stationary for- 
mulation by considering that: 

a) The grown seeds with volume V greater than a certain fixed volume Vl are removed 
from the system; here it is understood V c << V, << Vo, where V c and Vo are, respectively, the 
volumes of the critical seed and of the whole system; 

b) Intense thermodynamic gas phase parameters are maintained during nucleation (for 
o ~) instance, the temperature To, and the chemical potentials ~A and 

The minimum work in the formation of seeds with energy E, entropy S, volume V, and 
numbers of molecules N A and N B can be written in standard form under conditions b) [ii] 

o - - ~ N ~ ) .  (6) U = A ( E - - T o S + p o V - - ~ A N A  

The temperature T of the seed can be considered to equal To for not too high supersaturations 
(corresponding estimates are made in [12]). We then obtain from (6) 

U Fe-4-poV o , __ - --~A~x ~ N B ,  (7) 

where F e is the seedfree energy. Considering surface-inactive substances for which the sur- 
face tension coefficient a is independent of the mixture concentratlon to simplify the for- 
mulas we use the representation Fe = FV + co, where o is the seed surface area.* Under the 
assumption of incompressibility of the fluid, the equation of state does not contain p, i.e., 
has the form V = V(NA, NB, T), which permits describing the seed by giving the numbers N A and 
N B. For thermodynamic forces conjugate to N A and NB, we obtain 

X A  = \ a ~ V A ) N B . r  = ~ a  - -  ~.~ - -  VA ( p  - -  po ) ,  

X B = - - (  ~ I = ~B--~o~--vz(p -po) ,  
NA,T 

where ~A, lib are the chemical potentials of the fluid 

P = -- \-s = -- k-g'f'/NA,N~,r "7 

(8) 

is the pressure taking account of the surface part, r is the seed radius, and v A and v B are 
the molecular volumes of the components in the liquid phase. 

To evaluate the diffusion tensor D, relating the fluxes JA = NA and JB = NB to the 
thermodynamic forces XA, X B by the relations 

j = DX, (9) 

where J = {JA, jB}, X = {XA, XB} for brevity, specific assumptions must be made about the 
properties of the gas phase. It was assumed in [9, i0] that the gas phase is a mixture of 
ideal gases of molecules A, B and different molecular complexes AA, AB, BB, etc., where the 
acts of evaporation and condensation of each "component" including the complexes are inde- 
pendent, and their probabilities satisfy the detailed balance principle. As is shown in 
[i0], the symmetry relationships (4) follow from these assumptions. Let us show that the 
correlation between elementary processes inevitably results in spoilage of (4). 

Let us start with the simplest case 

v~ ~ >> nA >> max (nAA, n A B . . . ) , "  1/~ ~Z >> n s  >> max (nBB, nAB. . . )~  

where n is the volume density when the gas phase can be considered as a mixture of ideal 
gases A and B. Then the flows j+ of the components from the gas phase in the seed are given 
by the usual gaskinetic formulas 

j+ = ~ n ~  (i0) 

*In the general case, the surface term has the form ao only for a high potential fie" 
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From (ii) 
Thus 

where 

_(krili~(mX x/~ 0 ) 
- \2~ / \ 0 m~1: ~ ': 

and mA, m B are the molecule masses. 

Let us write the most general expression for J by taking account of the correlation be- 
tween different elementary processes 

J = J0(NA, NB) + ( t  - -  R ( c ) ) j + ,  

where the diagonal elements of the matrix R are reflection coefficients of the molecules, and 
the nondiagonal elements describe the correlation between the molecule condensations of one 
component and the molecule evaporation of the other, and c = NB/NA is the mixture concentra- 
tion in the seed. 

The difference R from zero is related mainly to the local heating of the fluid under 
consideration of the molecules, hence, all the components of R, are of generally the same 
order, where there is no foundation to consider them small compared to one. Moreover, in 
the case of nonlsothermal condensation (i.e., for sufficiently small critical seeds in the 
absence of a gas carrier) there follows from the results in [12] 

RAB + R~ ___ RsA + RA~ -- I- 
O Let us consider a small change in supersaturation characterized by the variations ~A' 

6~. Since jo does not vary here, then 

8j = (i - -  R ) S j +  = (I - -  R ) p S n .  ( n )  

On t h e  o t h e r  h a n d ,  f r o m  (8)  

8n = CfX,  (12 )  

where in zeroth order in t h e  gas parameters 

n A n B 
CAA =--VF' CBB =--~T~ CA. = CBa = O. 

and (12) we obtain ~J = (I -- R)$C~X, or by comparison with (9), D = (i -- R)$C. 

On the phase equilibrium line 

DBA \ m  B ] n A RBA (e) " 

Co = c-o(e, r ) ,  po = p -# ,  T), 

where co = nB/n A, (3) should be satisfied, which yields 

c o 
DAB = ---- DBA. 

c o 

Defining co at the labile equilibrium point from the Thomson formula for a mixture [13] 

VA{Z �9 VB0~ 

we f i n d  c o / c o  = exp  - -  2 v B a / r o k T  o r  i n  t h e  c a s e  cv  B << v A o f  w e a k  s o l u t i o n s  

c--t~ ~ e x p - -  2 \ ~ - 1  k r  ~ " A  .J" 
% 

S u b s t i t u t i n g  t h e  n u m e r i c a l  v a l u e s  f o r  t h e  a q u e o u s  s o l u t i o n  a t  T ~ 4 0 0 ~  we f i n d  

co ] 
- -  ' ~  exp - -  1.5-~A N~tl/3 
C O 

and we see that (4) is spoiled in the case o f  macromolecular dissolved substances even for 
comparatively high critical seeds with N A ~ 10a-10 s. Because of the above relative to the 
components of R, the diagonal and nondiagonal elements of D. hence generally have the same 
order of magnitude. 

(13) 

(14) 

(15) 
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Let us extend the results obtained by taking account of the correlation in the ~as phase. 
Let us start with the case when the presence of molecular complexes can be neglected ; it is 
known to be realized, say, for inert gases. Then, particle scattering which is quasiclasslcal 
because of the smallness ~=na/~/mkT does not change the Maxwell distribution in the momenta, 
and (i0) remainsvalid. Defining the relation between ~n and ~X from the expansions in the 
gas parameters 

P0 k ~A -~ ~B t 

~ = ~ (~ - & L  - 2&.  ~. + . . . ) ,  

n .  = ~.  (i - U ~. - 2&. ~ + . . . ) ,  

where ~ ffi (mkT/2~a)=/aexp(~/kT) is the fugacity, and I are the second virtual coefficients, 
we find an expression for C in (12). To the accuracy of squares of the small parameters of 
the type nAVA, IAnA, etc., we obtain 

EBB ~ - - -  

% ( • -  I a n a  -5 VAnA)~ CAa -- kr  

% (l -- I s n s  + VBnB),: CAB = CBA = kT 
IABnAnB 

kT 

Now we have in place of (13) 

(co) - -  

DAB CoRAB (mAI 1/g 
DBA -- "RBA' \~B]  (I -~- PO~ (Co)), 

-TAB (RAAmB -- CoRBBmA) ) 
1 I A  - -  v A  - -  co ( I B  - -  v B )  + kT (i -~ CO) l~ ~1/2~1/2 ~" 

from which we find by requiring satisfaction of (3) under the condition (14) 

OAB __ .~  (~ + p , ( ~ o )  - ~ (~o)). DB A 

Let us briefly write the results which result from taking account of the presence of 
complexes (AB for definiteness). For simplicity, we here neglect the effects considered above 
for the nonideality of the gas, and the sole difference from the approach in [9, i0] is 
taking account of the correlation between the elementary processes of evaporation and conden- 
sation. It can be verified that the minimal work of U retains the form (7) when taking ac- 
count of the chemical equilibrium condition ~o + B~ = o relative to the formation of com- A AB 
plexes. The flux of complexes on the seed surface from the gas is given by the formula 

where 8AB = (kT/2~(mA + mB)) x/a, and nAB is the concentration of the complexes. Trivially 
generalizing (ll) and (12), we find 

G 
DAA -- ~-f [(I -- NAA) ~AnA + (I -- RA~ -- NAB) ~ABnA,], 

G 

DAB = ~ [(1 -- RAA -- RA~) ~ABn.~ -- ~BRABnBI, 

DBA = ~ [(l - -  Rnn - -  RnA) ~ ASn aB - -  ~ ARBAnA]., 

from which the relationships replacing (15) follows. Without writing it down explicitly, 
let us note that the tensor D turns out to be almost symmetric if 

~BRAB nB << ~An nAB, ~ARBAnA << ~AB nan" 

The error in the approach developed in [14] for which the two considered cases of intra- 
molecular correlation in the gas phase, corresponding to perfectly different momentum distri- 

*Here and below we have in mind the bound state belonging to a discrete energy spectrum for a 
fixed center of mass, and not the virtual groups of Mayer expansions when speaking about the 
complexes. 
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butions substantially assumed identical, is evident from the above, In this connection, 
let's againemphasize thedifference between the molecular complexes being understood as bound 
states, and the groups of Mayer expansions of the statistical sum of a nonideal gas. 

The results obtained are extended trivially to the case of simultaneously taking account 
of the nonldeallty and the presence of complexes (we shall not write down the sufficiently 
awkward expressions to be obtained). 

In concusion, let us note that the possibility of obtaining relations between the dif- 
fusion tensor components at the crossing point U (as well as in the domain outside the cros- 
sing, as is necessary for a more accurate study of the asymptotic of the solution (i) govern- 
ing the composition of the grown seeds) for different specific models is actually based on an 
exact calculation of the dependence of the kinetic coefficients on the gas phase parameters. 
This permits the hope that relations diminishing the number of independent components of the 
diffusion tensor will be obtained successfully even in other problems where one of the phases 
is a weakly monideal gas, which will substantially facilitate the problem of calculating them 
from experimental results. 
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